The Evolution of Supernova Remnants as Seen in Radio Emission

Roland Kothes

Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National ResearchCouncil of Canada University of Calgary Max-Planck-Institut für Radioastronomie

SNR Types

We distinguish between 3 different types of radio SNRs:

pure shell-type, created by the interaction of the expanding shockwave with circumstellar material (80%)

filled-centre, plerion-type, crab-like, or pulsar wind nebula, created by an energetic wind of particles and magnetic field injected by a central pulsar (5 %)

composite type (15%)

(Green's Catalogue of Galactic Supernova Remnants)

But theoretically there should be only 2 types:

pure shell-type, as the remnant of the thermonuclear explosion of a white dwarf (SNIa), since in these explosions the whole star is destroyed ($E_0 \approx 1.5 \cdot 10^{51} \, erg/s, \, M_0 = 1.4 \, M_{\odot}$). composite type, as the remnant of the core-collapse explosion of a massive star (SNII, SNIb/c), since in these explosions a rotating neutron star is left behind ($E_0 \approx 10^{49}$ to $(2 \cdot 10^{51} \, erg/s \, M_0 \approx 3 \text{ to } 20 \, M_{\odot}).$

The hydrodynamic evolution of shell-type remnants is divided into three major phases:

free expansion phase
adiabatic expansion phase, or Sedov phase
radiative expansion phase

Shockwave

Free Expansion:

- expansion is dominated by the ejecta ($R \sim t$), which contains a radial magnetic field - a relic of the progenitor star - and lasts a few hundred up to 2000 yr
- swept up material is slowly accumulating outside the ejecta with a frozen in tangential magnetic field
- between ejecta and swept up material a turbulent zone is established in which electrons are accelerated to relativistic velocities

Shockwave

Characteristics of the Radio Emission During the Free Expansion Phase:

- steep radio synchrotron spectrum with $\alpha < -0.5$ (S~ ν^{α}) with a radial magnetic field
- smooth radio shell without sharp outer edge
- low percentage polarization that decreases with time while the swept up material becomes more and more important

Free Expanding SNRs

Among the free expanding shell-type SNRs we find:

Cas A (SNII? of ≈ 1680, α = -0.77)
Kepler's SNR (SNIa of 1604, α = -0.64)
Tycho's SNR (SNIa of 1572, α = -0.61)
SN 1006 (SNIa? of 1006, α = -0.60)

All of these SNRs are in radio pure shell-type remnants with a radial magnetic field structure

Cassiopeia A

The guest star from AD 386: SNR G11.2–0.3

The guest star from AD 386: SNR G11.2–0.3

Effelsberg TP 32 GHz

Effelsberg PI + B-vectors 32 GHz

G11.2–0.3 is at the transition between free expansion and adiabatic expansion. (Kothes & Reich, 2001)

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China - p.10/40

Adiabatic (Sedov) Expansion:

the SNR is expanding adiabatically dominated by the swept up material ($R \sim t^{0.4}$), which contains a frozen in tangential magnetic field electrons are still accelerated in the turbulent zone and additionally at the outside edge radiative losses are still negligible Sedov phase lasts a few 1000 to 15000 yrs

Shockwave

Characteristics of the Radio Emission During the Sedov Phase:

- synchrotron radio spectrum with $\alpha \approx -0.5$ (S $\sim \nu^{\alpha}$) with a tangential magnetic field
- radio shell with a sharp outer edge
 - high percentage polarization due to well defined magnetic field structure

The magnetic field perpendicular to the expansion direction is frozen into the expanding swept up material.

DA 530

DA 530 is expanding adiabatically in a quite homogenous ambient medium.

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China - p.14/40

Shockwave

Radiative Expansion (momentum conserving snowplow phase):

- energy losses **du**e to radiative cooling become significant
- expanding shell moves at constant radial momentum $(R \sim t^{0.25})$
- the synchrotron spectrum may become flatter and the emission slowly fades away

HB 9

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China – p.16/40

Supernovae and their Environment

Progenitor: White Dwarf Location: far away from place of birth Environment: diffuse, low density **Progenitor: Massive Red Giant** Location: close to place of birth Environment: complex, high density **SNIb/c:** Progenitor: Wolf Rayet Star Location: close to place of birth **Environment: stellar wind bubble**

CTB 109

CO around CTB 109

CTB 109 is interacting with a dense molecular cloud

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China – p.19/40

Dust around CTB 109

CTB 109 is interacting with a dense molecular cloud
 and dust

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China - p.20/40

HI around CTB 109

CTB 109 is interacting with a dense molecular cloud and dust It seems to be located at a HI density gradient and there is no evidence of a stellar wind bubble

⇒ CTB 109 is a strong SNII candidate

CTB 1

Effelsberg TP 10.5 GHz

(Courtesy E. Fürst)

CTB 1 has a shell structure with an opening to the north-west.

HI around CTB 1

CTB 1 exploded inside a stellar wind bubble. SNIb?

(Yar et al., 2004)

Pulsar Wind Nebulae

Pulsars:

- pulsars are fast rotating neutron stars, which lose energy by dipole radiation
- this energy is released in an energetic wind of particles and magnetic field
- the interaction of the relativistic electrons and the magnetic field produce synchrotron emission with a flat spectrum

 $(-0.3 \le \alpha \le 0.0)$

the characteristic age τ of a pulsar is defined by: $\tau = \frac{P}{2\dot{P}}$ for a pure dipole field

Pulsar Wind Nebulae

The energy loss rate of a pulsar decreases with time as:

$$\dot{E} = \frac{\dot{E}_0}{(1+\frac{t}{\tau_0})^{\beta}}$$
, ($\beta = 2$ for a dipole field)

here τ_0 is the initial characteristic age also called the pulsar's "lifetime", because it is the time after which the energy input of a pulsar becomes neligible for its nebula.

 \Rightarrow to get an idea about the energy content of such a nebula and a pulsar's lifetime, knowledge about the real age of the pulsar is essential.

Historical Pulsars

There are three "historical" pulsars:

SNR	Pulsar	Age [yr]	τ [yr]	\dot{E} [erg/s]
3C58	J0205+6449	820	5370	$2.7\cdot 10^{37}$
Crab nebula	B0531+21	950	1240	$4.6 \cdot 10^{38}$
G11.2-0.3	J1811-1925	1620	23300	$6.4 \cdot 10^{36}$

Historical Pulsars

Initial parameters for the "historical" pulsars:

SNR	Pulsar	$ au_0$ [yr]	\dot{E}_0 [erg/s]	E_{tot} [erg]
3C58	J0205+6449	4550	$3.8 \cdot 10^{37}$	10^{48}
Crab nebula	B0531+21	320	$1.0\cdot 10^{40}$	10^{50}
G11.2-0.3	J1811-1925	21680	$7.4 \cdot 10^{36}$	$4 \cdot 10^{47}$

It is interesting to note that the radio flux of the Crab Nebula is decreasing while it is increasing for 3C58.

Crab Nebula

Effelsberg TP + B-vectors 32 GHz

(Courtesy W. Reich)

Evolution of Pulsar Wind Nebulae

PWNe are expected to expand inside their host shell-type remnant and to follow their expansion characteristics. **However**,...

a few pulsar winds are stronger than the explosion itself, e.g. the Crab pulsar, which has released about 10⁵⁰ erg into its nebula, while the explosion energy was supposed to be merely a few times 10⁴⁹ erg

on the other hand there are many pulsars with a very weak wind and their nebulae are a lot smaller than the interior of the remnant, e.g. W44, which has a size of more than 30', but the PWN inside has a size of only $2' \times 0.5'$

Evolution of Pulsar Wind Nebulae

When the interaction between the ejecta and the swept up material becomes strong a reverse shock is created, travelling back into the interior of the SNR:

- this leads to compression and maybe additional electron acceleration in the PWN
- a density gradient in the ambient medium can lead to an asymmetric reverse shock and an off-centre position for the pulsar, e.g. Vela (Blondin et al., 2001)

G106.3+2.7

PWN with pulsar

•

Galactic

G106.3+2.7 at 1420 MHz

Head

•

•

Kothes et al., 2001

0

The Cold Environment of G106.3+2.7

A shell-like HI structure is surrounding the head of the SNR

- a small HI shell is wrapped around the pulsar wind nebula
- towards the west a thin molecular shell separates the head from the tail

The reverse shock pushed away the original PWN, creating the diffuse part of the head and the pulsar started a new nebula.

Spectral Breaks

Virtually all PWNe exhibit a break in the synchrotron spectrum:

SNR	Break Frequency	(i)njected/(c)ooling
Crab Nebula	40 keV + 1000	i
Crab Nebula	14000 GHz	С
W44	8000 GHz	С
Vela X	100 GHz	С
G29.7-0.3	55 GHz	i
3C 58	50 GHz	i
G21.5-0.9	30-60 GHz	?
G16.7+0.1	26 GHz	i
CTB 87	10 GHz	С
G106.3+2.7	4.5 GHz	С
DA 495	1.3 GHz	С

Synchrotron Cooling

The cooling break represents the frequency at which synchrotron losses become significant:

 $\nu_c \, [\text{GHz}] = 1.187 \cdot B^{-3} \, [\text{G}] \cdot t^{-2} \, [\text{yr}]$

(Chevalier, 2000)

The cooling break frequency is slowly decreasing with time while the intrinsic break should remain constant after the lifetime of the pulsar.

The spectrum of the "Boomerang"

Cosmos Probed by Radio, September 7 - 13, 2005, Kashi/Urumqi, China - p.35/40

The age of the "Boomerang"

(Kothes et al., 2005)

DA 495

The spectrum of DA 495

 $\nu_c = 1.3 \text{ GHz}$

(Kothes et al., 2005)

DA 495 - an aging Crab Nebula?

The pulsar in DA 495 is not known, but we can estimate the \dot{E} from the X-ray luminosity of the nebula to $\dot{E} = 2.4 \cdot 10^{35}$ erg/s.

Using the historical pulsars we get:

Basis	t_{DA495} [yr]	$ au_{\mathrm{DA495}}$ [yr]	B_{req} [mG]	$E_{\rm tot}$ [erg]	$B_{\max} [mG]$
Crab Nebula	65000	65300	0.60	1×10^{50}	0.98
3C 58	52700	57250	0.69	5×10^{48}	0.22
G11.2-0.3	106080	129380	0.43	4.2×10^{48}	0.21

Future Prospects: with the Urumqi 25m telescope at 6cm

observations of large SNRs to study the late stages of evolution

comparison with other surveys give us:

- rotation measure values and magnetic field directions
- spectral index fluctuations to indicate evolutionary phases

discover new shell-type remnants and even more important pulsar wind nebulae