Development of Millimeter-wave Spectroscopic Array Receiver (SSAR)

Ji Yang Purple Mountain Observatory Chinese Academy of Sciences Nanjing 210008 jiyang@pmo.ac.cn

Collaborators: Wenlei Shan, Shengcai Shi, Qijun Yao, Yinxi Zuo, Shanhuai Chen, Aiqin Cao, Zhenghui Lin, Jian Xu, Qingeng Huang, Xuguo Zhang, Zhengqiang Li, Jiaqiang Zhong

China-US Bilateral Workshop on Astronomy, April 21-25 2008, Beijing

Table of Content

- 1, Background of the project
- 2, Key technological features
 - Sideband Separation Mixer
 - LO distribution & integration of 4K assembly
 - New IF approach
 - Digital bias network
 - High-resolution digital FFT spectrometer
- 3, Application in astronomy
- 4, Conclusion

The Delingha (Nexans) Millimeter-wave Radio Telescope Qinghai Radio Astronomy Observatory, Purple Mountain Observatory

- **97°33′.6E, 37°22′.4**N
- **3200 m**
- 35 km east of Delingha City, Qinghai Province
- Cold in Winter (-10 ~ -25 ° C)
- **Dry (3~5mm PWV)**
- Operation: Sept-June

The 3mm Band Multi-line System: Principle

A single SIS front-end in double sideband (DSB) receiving mode

3-line spectroscopic backend

The 3mm multi-line banckend system: operation since 2002

Mapping sample : The massive core associated with IRAS 20110+3321

12CO

BCO

CO Emission from SN1572 (Tycho's SNR)

Requirements on large sky coverage & quick imaging spectroscopy: an array receiver as a solution

The Superconducting Spectroscopic Array Receiver (SSAR) : Basic Facts

- Array elements: 3×3 pixels
- Working frequency range: 85-116 GHz
- Receiving mode: Sideband Separation (2SB)
- Receiver noise temperature: ≤60 K
- Sideband rejection ratio: $\geq 10 \text{ dB}$
- IF range: 2.64±500 MHz
- Spectrometer: 1 GHz bandwidth,

16k channels each

Scheme of SSAR

IF signal manipulation 1 GHz BW @ 2.64 GHz 18modules

Cryogenic Multi-beam RF Front-end

Digital Signal Processing Backend 18×1 GHz, 16384 pts each

Key Technological Challenges

- •Design of sideband separation (2SB) mixer unit
- •4K-stage layout and integration of multi-pixels
- •LO power distribution
- •Cryogenic design and optical coupling
- Design of digital bias network for intelligent control
- •FFT Digital spectrometers for 18 channels

Application of sideband separation scheme (2SB): simultaneous receiving of ¹²CO (USB), ¹³CO & C¹⁸O (LSB)

Design of SIS Mixer and Junction

Sideband Separation Mixing Scheme will be used for the mixers. Incident RF signal is fed into two DSB mixers by waveguide RF hybrid with 90° phase shift. The upper- and lower sideband signal are subsequently separated by an IF hybrid.

Mirrored Single SIS Junction Design: junction tuned by parallel-connected inductance (Type A and B) & end-loaded design (Type C) (Shan, et al. 2008, in preparation)

Unit in micrometer

Noise Performance of the Superconducting SIS Mixer

According to the design, the sideband separation ratio will be > 10 dB and the SIS noise level is to be of 20-30 K over the 80-120 GHz band

Niobium SIS chip & I-V characteristics

- I-line segmented exposure, shared with the superconducting facilities of NAOJ at Mitaka;
- Mirrored Single Junction, junction size 2µm×2µm, current density 4 kA/cm², Leakage 3.5µA;
- 4 wafers, 9 sectors per wafer, and 17 junctions per sector
- yield~30%.

Cooled HBT Amplifiers in 1st IF sector

- SiGe HBT amp (Sirenza Microdevices SGA-1163), 2 stages
- NF dropped by 2.2dB and gain increased by 6dB when cooled from 290K to 70K at 2.62GHz.
- Characterization and performance (Cao, A. et al. GSMM2008)

Digital Bias Network (DBN)

- Using digital Bias source to replace the existing analog bias
- Simultaneous and automatic turning of SIS bias for each array element
- Low noise and High Stability

Technological Approaches for the Digital Bias

- Balanced voltage sensing circuit for reduced readback noise
- Shunt resistor to improve the stability of bias voltage

Bias Network illustration

Other Technological Approaches for Digital Bias Network

Optimized Circuit Layout

- Integrate OP amp into PCB
- External DC driving

Improved electronic isolations

- Gold-coating connectors
- photo-optical isolations
- Sophisticated RFI shielding
- Optimized communication scheme

New Digital FFT Spectrometer

Transition from AOS to Digital FFT spectrometers

Features: Wide bandwidth, High dynamic range, High resolution, High stability, Flexible Configuration

Parameters	FFTS(AC240)	AOS-I/II/III(DLH)
ADC	8bit@2 x 1GS/s	16bit@1MS/s
Bandwidth (MHz)	200/250/500/1000	42/43/145
Channels	16384	1024
Freq resolution (KHz)	16/18/36/74	80/86/209
Dynamic Range (dB)	38 dB	<20
Integratiion (s)	0.001~70,000	0.02~255
Allan time (s)	3000	~100
I/O	cPCI -BUS 32bit	PCI-BUS 32bit
Configuration	reconfigurable	fixed

2006 March Start system hardware

2007 April Installation and testing observations
2007 Sept- Open use

 System Development

 for the Digital FFT

 FFT Spectrometer

 Spectrometer

0-500 MHz Bandband GHz Bandwidth 8 bit sampling 16384 channels

0-1 GHz Baseband

GI

0-500MHz

Baseband Convertor I 0-1000MHz)

Baseline Quality for Spectra taken by FFTS

S140 500 MHz

IRC+10216 500 MHz

Optical Schemes for Antenna Coupling

A. With Relay Optics with Focusing Mirrors Drawback: beam obscuration

B. With Relay Optics with Focusing Lenses Drawback: reflections between the lenses

C. Without Relay Optics, reshaping sub-refl. *Performance almost ideal Drawback: inconvenience of field rotation*

GRASP9 Simulation

Zuo, et al. GSMM2008

Instrument Operation Mode: Outdoor & Indoor

Major Scientific Capabilities for SSAR

- Galactic plane survey in ¹²CO/¹³CO/C¹⁸O combination: formation and evolution of molecular clouds;
- Physics of high-mass star formation: dense cores, infall motions and outflows;
- Follow-up Studies from Spitzer, Herschel, etc.
- Galactic SNRs;
- ¹²CO/¹³CO/C¹⁸O & high-density gas tracers in nearby galaxies

Simulation for a single pointing of SSAR: order of magnitude improvement w.r.t. the current system

Science Case: Galactic Plane in ¹²CO, ¹³CO, & C¹⁸O

- Mapping speed: (2-4) ×10⁶ spectra/year
- Sky coverage: 15°×20°/year
- Lines: ¹²CO/¹³CO/C¹⁸O (J=1-0)
- Density probing range: 10²⁻⁴ cm⁻³
- Line sensitivity: 0.2-0.3 K
- Velocity coverage: 2700 km s⁻¹
- Spectral resolution: 61 kHz (0.17 km s⁻¹ @ 110 GHz)

• 2004-2005

- 2005-2006
- 2006
- 2007-2008
- 2009
- 2010-

Timeline System Concept Key technological demonstration **Project** funded Hardware design and development **Installation & Testing** Open use

Invite collaborations in science programs which make use of the new instrument.

Summary

- 3mm multi-line backend configuration at Delingha telescope has been proved to be an effective configuration in the studies on Galactic star forming regions;
- A Superconducting Spectroscopic Array Receiver (SSAR), inheriting the advantage of multi-line observations, has been designed to meet the increasing observational demands;
- New electronic designs and advanced approaches, such as the Side-band Separation (2SB) scheme, the digital FFT spectrometry, and the digital bias have been employed in the system;
- The receiver is under development. After completion, it will provide a powerful instrument for surveys of star forming regions in the Milky Way and nearby galaxies. A full coverage of $b=\pm 5^{\circ}$ of the northern galactic plane can be finished within 6 years.