

Focal Plane Array Developments at NRAO China – USA Bilateral Workshop April 2008 Roger Norrod (NRAO)

Types of FPA

- Independent Beams
 - Sparse Arrays of Feedhorns
 - Fully Sampled Arrays of "bare" bolometers
- Phased Array Feeds

Feedhorn Arrays

- Have been built for more than 30 years.
- Sparsely sample the focal plane.
 2 to 5 FWHM beam-to-beam spacings.
- Challenges are cost control, packaging, interconnections, and data acquisition.

Example: NRAO 7-Feed, 6cm Receiver

History with Feedhorn Arrays 7-Feed, 6cm Receiver

- •Designed and built in the 1980's
- •Cryogenic GAsFET amplifiers
- •Dual Circular Polarization
- •Continuum Only, 500 MHz bandwidth
- •Observed on the Green Bank 300' Telescope, later at Parkes

Results 7-Feed, 6cm Receiver

April 2008

Recently Developed MUSTANG Bolometer Array

•8 X 8 Array of TES elements

•Collaboration of University of Pennsylvania, NASA Goddard, NIST, Cardiff, and NRAO

Designed for use on the GBT

•First light, engineering observations in 2006-2007

•First science observations winter 2008.

MUSTANG Receiver

•F λ /2 Sampling of Focal Plane, Array ~ 30 X 30 asec on sky.

•Uses lenses, filters, baffles to control illumination.

•Nominal 80-90GHz Bandpass

•Pulse Tube, He-4 & He-3 Sorption Refrigeration (300mK)

•Optics & Dewar allow expansion to larger array.

More Info: http://chile1.physics.upenn.edu/gbtpublic/ April 2008 China-USA Workshop

MUSTANG on GBT

Challenges: Microphonics, cryogenics, sensitivity

Some MUSTANG Results

MUSTANG Early Science Obs 2008

April 2008

Under Development K-Band FPA for GBT

- •Up to 61 Horns
- •18-26.5 GHz, Dual Pol

•2.5-3 FWHM Beam Spacing. Outer beams' efficiency >90% of center's.

•Cryogenic InP HFET Amplifiers

•Primary role is spectral line mapping.

- Construction for 7 beam front-end is funded.
- First light expected Fall 2009.
- Initially will be used with existing GBT Spectrometer.
- Collaboration with U. of Calgary (Canada) for data analysis pipeline.

Phased Array Feed Research At NRAO

Rick Fisher began research into PAFs for radio astronomy in the 1990's. He and Rich Bradley built a small PAF using sinuous elements for experimental work.

Digital Beamforming

M < N

Digital Beamforming

- For adequate FP sampling, radiating elements must be small => over illuminate the antenna. Beamformers must synthesize efficient illumination and steer the farfield beam as desired.
- Beamformers can adaptively place beam nulls on RFI sources.

Advantages of PAFs for Astronomy

- Multiple simultaneously formed beams in different look directions
- Fast survey capability
- Adaptive beamforming to cancel RFI
- Direct and adaptive control of dish illumination pattern
- Increased sensitivity and spillover efficiency
- Proposed Square Kilometer Array (SKA) configurations may require array feeds to deal with RFI and survey requirements

April 2008

BYU-NRAO 20m Experiment (2007)

Non-cryogenic array built by BYU students observed astronomical sources, in the presence of moving and stationary RFI sources.

BYU-NRAO 20m Experiment (2007)

China-USA Workshop

Calibration

Telescope steering:

24 arcmin steps (half beamwidth)20 seconds per pointing

Beamformer:

Calibrated using Cygnus A Maximum SNR

Source flux density: 1380 Jy

 $\begin{array}{l} \mbox{Preliminary T_{sys} calibration:} \\ \mbox{Gain: } 0.06 \pm 0.005 \mbox{ K/Jy} \\ \mbox{Aperture efficiency: } 53\% \pm 5\% \end{array}$

Adaptive **RFI** Mitigation

RFI Source: Artificial CW Tone, moving ground-based transmitter Significant multipath (simulates terrestrial source)

Quiescent beamformer: Maximum SNR

RFI Mitigation: Subspace Projection
Projection operator nulls RFI subspace identified using dominant eigenvector of array response covariance
4.9 ms short term integration (STI) time

PAF Challenges

- Receiver complexity
- Achieving low system noise
- Impedance matching and mutual coupling
- RFI cancellation null depth
- Adaptive signal processing to cancel moving interference causes pattern rumble
- Pattern fluctuations limit stable integration time and reduce sensitivity

April 2008

- Focus on achievement of low-noise array technology, competitive with single beam.
- Understand mutual coupling, noise matching.
- Push algorithms for efficient multibeaming and stability in midst of RFI.