

National Radio Astronomy Observatory

China–US Bilateral Workshop on Astronomy April 21–25, 2008

Multiple Point Feeds for Spherical Telescopes

Jim Condon

China–US Bilateral Workshop on Astronomy April 21-25, 20088

China–US Bilateral Workshop on Astronomy April 21-25, 20088

One hour of data, 611 MHz drift scan, 10 beams, ~13 arcmin FWHM, declination separation ~ 0.6 FHWM

China–US Bilateral Workshop on Astronomy April 21-25, 20088

Point Feeds for a Spherical Reflector

 $P \propto \cos^2(B\theta)$ **Optimum:** $B \approx 0.52$ $(R/\lambda)^{1/4}$ $z pprox 0.21 \ (R\lambda)^{1/2}$ (Condon, J. 1969, **CSUAC 182)**

FAST R = 300 m

China–US Bilateral Workshop on Astronomy April 21-25, 20088

Best Performance

$$\label{eq:gamma} \begin{split} \eta &\approx 0.81 \mbox{ (phase errors)} \\ \mbox{ Similar to uniformly illuminated} \\ \mbox{ paraboloid having} \\ \mbox{ A}_{eff} &\approx 4.1 \mbox{ } (\lambda R^3)^{1/2} \end{split}$$

China–US Bilateral Workshop on Astronomy April 21-25, 20088

Performance on FAST (R = 300 m)

Equivalent paraboloid with on-axis $P \propto \cos^2 (B\theta)$ feed has diameter $D \approx 194 \ \lambda^{1/4} (m)$ (both gain and beamwidth)

v (GHz)	λ (m)	D (m)
0.3	1.0	194
1.4	0.21	132
5.0	0.06	96

D = 100 m is not small

China–US Bilateral Workshop on Astronomy April 21-25, 20088

Telescope figure of merit: R (rate) $\propto (\Delta t)^{-1}$ t = time

For observing a single unresolved source:

 $\Delta S = (\Delta S / \Delta T) \Delta T$ $(\Delta T / \Delta S) \propto A_{o} \propto D^{2}$ $A_{o} = effective area$ $\Delta T \propto T_{svs} (B \tau)^{-1/2}$

S =flux density, T =temperature D = diameter, B = bandwidth,

 τ = integration time = Δt

so for a given T_{svs}, B, and Δ S, R \propto (Δ t)⁻¹ and

 $R \propto D^4$

For a survey covering given large $\Omega >> N_b \Omega_b = \Omega_{fov}$ with a given sensitivity ΔS :

 N_{b} = number of beams, Ω_{b} = beam area, and

 $\Omega_{\rm fov}$ = field of view

 $A_{e}\,\Omega_{b} \propto \lambda^{2}$ (conservation of energy)

 $\Delta t = \tau \ \Omega \ / \ \Omega_{\rm fov} \propto {\sf D}^{-4} \ / \ ({\sf N}_{\rm b} {\sf D}^{-2})$

 $R \propto N_b D^2$

 $R \propto B N_b D^2$ $VLA D \sim 120 m$ $N_b = N_{rcvr} = 27$ B = 100 MHz EVLA, ALMA B'smuch higher so

A single dish is not enough

China–US Bilateral Workshop on Astronomy April 21-25, 20088

For a survey with a given τ :

For a long survey with a given scan rate (e.g., drift or slew):

Two confusion-limited 611 MHz scans on successive nights from the Arecibo 611 MHz multibeam survey: detecting low-frequency events below the confusion limit with a large filled aperture.

China–US Bilateral Workshop on Astronomy April 21-25, 20088

Summary

- Spherical reflectors have no axis of symmetry, permitting multiple simultaneous beams and "commensal" observing
- Point feeds are good for large-N_b, small-D surveys for sources and/or events
- Point feeds can be used if the actuators are not fast enough or are not working
- Keep design options open for point feeds (e.g., allow for more than one feed array at a time, don't design out z < 10 m)