GOALS: The Great Observatories All-sky LIRG Survey

A. S. Evans
(UVirginia/NRAO)

Collaborators

- J. M. Mazzarella, S. Lord, B. Chan (IPAC, Caltech)
- J. A. Surace, D.T. Frayer, L. Armus, J. Howell, A. O. Petric (SSC, Caltech)
- T.Vavilkin, F. Modica, J. Pizagno (Stony Brook)
- D. B. Sanders, J. Barnes, L. Chien (IfA, Hawaii)
- K. Iwasawa (MPG, Garching)
- ... and others

Luminous Infrared Galaxies

(LIRGs: $L_{\text {IR }}[8-1000 \mu \mathrm{~m}] \geq 10^{11} \mathrm{~L}_{\text {sun }}$)

- Spiral galaxies which show an increasing tendency to be involved in interactions or mergers with increasing luminosity
- Rich ISMs - dust and star-forming molecular gas
- Rich in optically-visible star clusters
- Optical evidence of active galactic nuclei in a substantial fraction

Why do we care about them?

- Sites of enhanced star formation \& (sometimes) AGN activity, making them ideal for studying the evolution of both phenomena \& the interplay between them
- Method of building up massive galaxies
- More common in the early universe than in the present epoch, with space densities comparable to nearby, normal massive galaxies

Issue I: Mergers take \sim few $\times 10^{8}$ years to evolve.

Issue 2: Dust obscuration affects our

perception of what is occurring

Thermal emission from dust heated by massive stars \& putative AGN

(SED - Sanders \& Mirabel I996; Galaxy - Vavilkin et al. 2007)

The IRAS Revised Bright Galaxy Sample (RBGS)

- IRAS-detected galaxies with $f_{60 \mathrm{um}}$ $>5.24 \mathrm{Jy} \&|\mathrm{~b}|>5^{\circ}$
- 629 objects with $z_{\text {median }} \sim 0.008$ $\& z_{\text {maximum }} \sim 0.08$
- 200 with $L_{\mathrm{IR}} \geq 10^{11.0} \mathrm{~L}_{\text {sun }}$
- Increasing signs of interaction \& merger with increasing $L_{\mathbb{R}}$

(Sanders et al. 2003)

GOALS Campaigns

- Spitzer Space Telescope IRAC and MIPS Imaging, and IRS Spectroscopy ($L_{I R} \geq 10^{11.0} L_{\text {sun }}$)
- GALEX UV imaging ($L_{\text {IR }}>10^{11.5} L_{\text {sun }}$)
- HST B, I, and H-band Imaging ($L_{\operatorname{R}}>10^{11.4} L_{\text {sun }}$), and UV-band imaging of a subset of cluster-rich LIRGs
- Chandra X-ray Observatory data (most of HST sample)

Interacting Galaxies

NASA, ESA, the Hubble Heritage (AURA/STScl)-ESA/Hubble Collaboration, and
A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Blue star-forming knots around nuclei \& in extended tails

(Evans et al. 2007)

ACS survey - cluster ID benefits from HST

 resolution

HST ACS vs. ground-based telescopes @ 0.4 um - a comparison
a) NGC 2623 - HST $0.4 \mu \mathrm{~m}$
b) NGC 2623 - MKO $0.4 \mu \mathrm{~m}$

$$
1 \overline{0^{\prime \prime}=4 \mathrm{kpc}}
$$

GOALS multi-wavelength dataset

(Evans 2007)

GOALS multi-wavelength dataset

GOALS case study: NGC 2623

- Late-stage, Toomre sequence merger
- $L_{\mathbb{R}}(8-1000 \mu \mathrm{~m}) \sim 3.3 \times 10^{\prime \prime}$ $L_{\text {sun }}$
- $M\left(\mathrm{H}_{2}\right) \sim 8 \times 10^{9} \mathrm{M}_{\text {sun }}$
(Sanders et al. I99I; Bryant \& Scoville I999)
- Optical classification ambiguous due to $\mathrm{H} \beta$ nondetection (Kim et al. I995)

B \& I-band off-nuclear star formation

- About 100 clusters with $M_{V} \sim-6.6$ to - 12.6 (within range of M_{V} for Antennae Galaxy)
- Age range $\sim 10^{6-7} \mathrm{yr}\left(\mathrm{A}_{V} \sim \mathrm{I}\right)$ or few $\times 10^{8}$ yrs with $\left.A_{V} \sim 0\right)$. Keck spectroscopy and HST UV data of the brightest clusters should constrain this.

The far-UV

- In the Far-UV, the off-nuclear region (ONR) \& nuclear region are nearly comparable in luminosity
- The UV-derived star formation rate (SFR) of the ONR is ~ 0.I $0.2 \mathrm{M}_{\text {sun }} \mathrm{yr}^{-1}$
- The SFR rate is comparable to that of the LMC, which is twice the size and half as bright as the ONR

A multi-wavelength view of NGC 2623

- The ONR contributes significantly less energy relative to the nuclear region at longer wavelengths
- The inner 600-700 pc produce almost all of the luminosity of NGC 2623

Mid-IR diagnostic diagram

(Armus et al. 2007)

Nuclear energy source(s)?

- The general appearance of the low-resolution IRS spectrum of NGC 2623 is that of a starburst galaxy
- $6.2 \mu \mathrm{~m}$ PAH equivalent width $(=0.6 \mu \mathrm{~m})$ consistent with star formation
- Stand-out feature: $10 \mu \mathrm{~m}$ silicate absorption ($\mathrm{T}_{9.8} \sim 1.5$)

Nuclear energy source(s)

- Spitzer short high-resolution IRS spectrum

Nuclear energy source(s)

- Faint high-ionization [NeV] $14.32 \mu \mathrm{~m}$ line detected. It is only seen in AGN hosts.

Nuclear energy source(s)

- The $[\mathrm{NeV}] /[\mathrm{Ne} \mathrm{II}]$ I $2.8 \mu \mathrm{~m}$ ratio is low (~ 0.05)
- The IRS AGN evidence is consistent with the X -ray evidence of an AGN based on the hardness of the X -ray spectrum \& the derived intrinsic X-ray luminosity (Maiolino et al. 2003; Evans et al. 2008)
- Evidence that the AGN is weak is consistent with the VLBI observation. It has a high brightness temperature core, but the core only accounts for 5% of the total radio emission (Lonsdale et al. 1993)

Star formation

- The IR and radio-derived SFR of the nuclear region ~ $50 \mathrm{M}_{\text {sun }}$ yr^{-1}. The actual value depends ultimately on what fraction of the IR \& radio are associated with the AGN.
- The UV-derived SFR of the ONR $\sim 0.1-0.2 \mathrm{M}_{\text {sun }} \mathrm{yr}^{-1}$.
- The optically-visible star formation, which prompted this case study, comprises < I\% of the total star formation in NGC 2623

Ground-based follow-up to GOALS

- Millimeter-line (CO, HCN) and continuum (dust) interferometric observations for tracing star forming molecular gas and the distribution of dust
- VLA Radio continuum for tracing star formation and AGN
- HI observations, which will aid and constraining dynamical models (e.g., J. Barnes Identakit program)
- and many others...

