Sub-millisecond radio pulsars

Renxin Xu (徐仁新)

Astronomy Department, School of Physics, Peking University

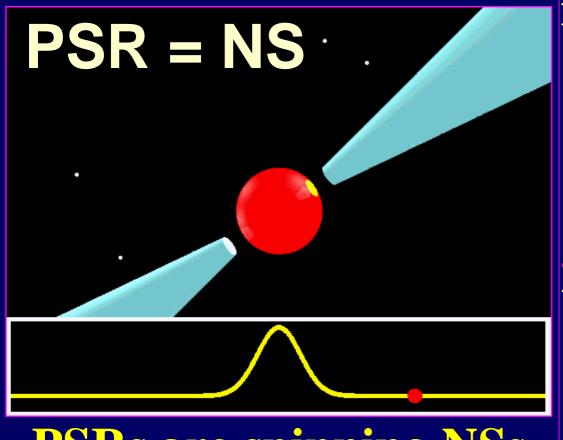
China-US Bilateral Workshop on Astronomy

Sleeping Buddha Hotel, Beijing

April 22, 2008

Summary

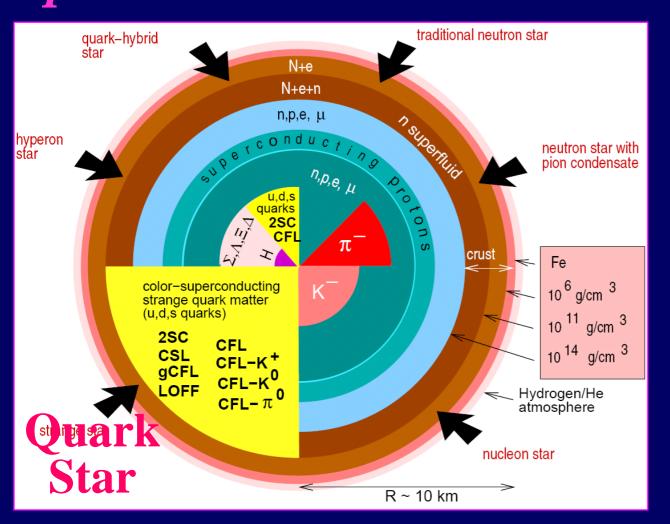
✓ Introduction: PSRs & Spin

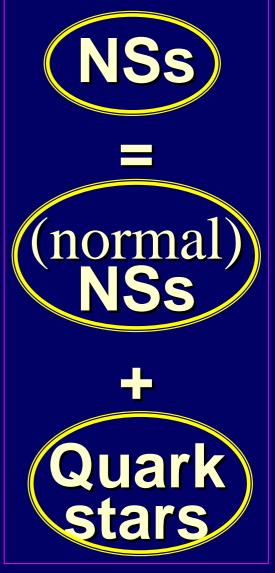

Activity of subms-PSRs

To find a subms-PSR

Conclusions

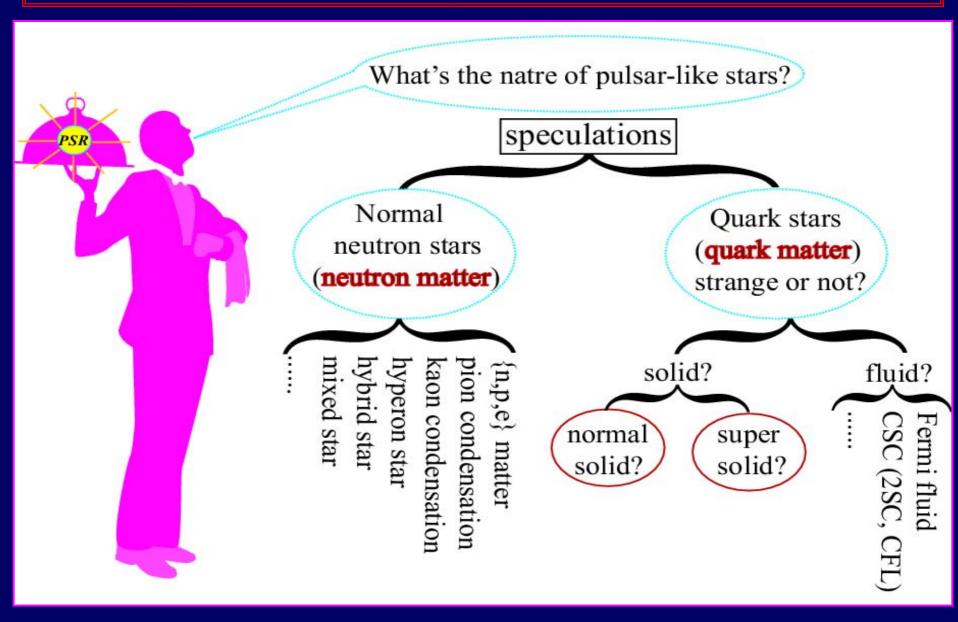
Why to focus on pulsars?


Important object!



PSRs are spinning NSs

- Peculiar astro-lab for *testing phy-law*
 - Strong gravity
 - •Strong EM force
 - •Supranuclear ρ
- Precision clocks to be very useful
 - •Measure GW, M, ...
 - •Time standard
 - •Navigation ...


What's the nature of pulsars? Speculations v.s. The truth

F. Weber: Prog.Part.Nucl.Phys. 54 (2005) 193

The nature of pulsars depends on physics of matter at supranuclear density which is still uncertain!

Observational *Evidence for NSs or QSs?*

To explain observational features in these two kinds of models

	Phenomena observed	Normal neutron stars	(Solid) quark stars	Note
Radio pulsars:	magnetospheric emission	ok?	ok?	e^{\pm} plasma
	glitch	vortex (un) pinning	$\operatorname{star-quake}$	to be checked
	slow glitch	???	in low-mass QS	no NS model
	drifting subpulses	binding?	binding!	surface condition
	(free) precession	damped ?	no damping!	rigid or not
	timing noise	high in msPSR?	low-mass QS	random torque
AXPs/SGRs*:	energy	B-field	gravity & strain	magnetar?
·	burst with glitch $\sim 10^{-6}$?	AISq^*	sometimes
	super-flare	high-B magnetar?	giant-quake?	
$CCOs^*$:	age discrepancy	?	QS with fossil disk	
	erratic timing	?	torqued by disk	
DTNs^* :	non-atomic feature	high B & Z?	bare QS!	
Thermal radius	why small?	polar cap?	low-mass QS	
APXPs*:	$ADmsXPs^*$	ok?	low-mass QS?	spin down & up
XRBs*:	burst	nuclear power	crusted QS?	
Sub-msPSRs*:	super-Kepler spin	no!	possible	prediction (QS)
Others:	supernova	ν -driven??	γ -driven?	not successful
	MACHOs*?	?	(low-mass) QS?	
	UHECRs*?	?	strangelets?	
*AXPs/SGRs: anomalous X-ray pulsars/soft γ -ray repeaters. CCOs: compact central objects. DTNs: dim				

^{*}AXPs/SGRs: anomalous X-ray pulsars/soft γ -ray repeaters, CCOs: compact central objects, DTNs: dim thermal "neutron stars", APXPs: accretion-powered X-ray pulsars, XRBs: X-ray bursts, Sub-msPSRs: sub-millisecond pulsars, MACHOs: massive compact halo objects, UHECRs: ultra-high energy cosmic rays, AISq: accretion-induced star-quake.

How to find clear feature to distinguish NSs and QSs?

Whether or not PSRs could rotate at sub-millisecond periods?

subms-PSRs ...

Subms-PSR would be solid evidence for quark stars!

Milestones in detecting PSRs faster and faster

```
P = 0.5 \text{ms} (1989)?
 Keplerian frequency (Mass-shedding limit)
 Stable axis-symmetric spin (GW radiation)
                P = 0.89 \text{ms} (2007)?
         Sub-ms periods (P < 1 \text{ ms})
                                    P=1.4ms
                      P = 1.6 \text{ms}
                         (1982)
                         PSR 1937
          P = 33ms
P \sim 1s
            (1968)
Crab
```

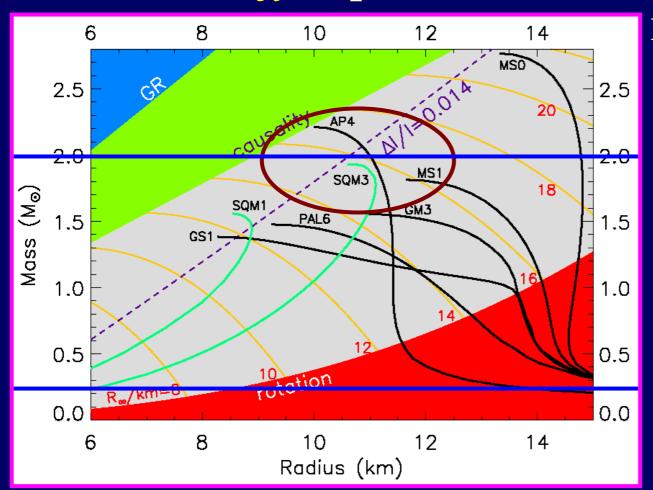
•Minimum period of stable uniform rotating for *causal* EoSs, with good precision, is given by an empirical formula:

Haensel et al. (1995)
$$P_{\min} (\text{EoS}) \approx 0.82 \text{ms} \left(\frac{M_{\odot}}{M_{\max}^{\text{stat}} (\text{EoS})}\right)^{1/2} \left(\frac{R_{M_{\max}}^{\text{stat}} (\text{EoS})}{10 \text{km}}\right)^{3/2}$$

A QS with $P < P_{\min}$ is possible because of low M and R!

•Could super-Kepler spin be possible for QSs?

$$P_{\text{Kepler}} = 0.5 M_1^{-1/2} R_6^{3/2} \text{ ms} \sim 0.6 \text{ms}$$


for gravitationally confined NSs!

For self-binding QSs ... High-T QGP in terrestrial experiment

RHIC \rightarrow sQGP (2004) \rightarrow super-Kepler?

Mass-Radius relation and spin limit

•QSs can be very light & small, while NSs can not. ⇒To identify a quark star in reality?

Lattimer & Prakash (2004)

 $\sim 2M_{\odot} \sim 10$ km

 $0.2\,M_{\odot}$

Summary

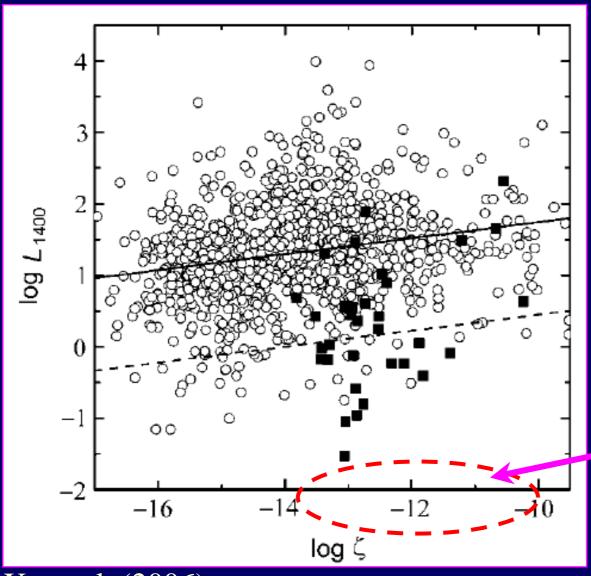
Introduction: PSRs & spin

✓ Activity of subms-PSRs

To find a subms-PSR

Conclusions

Rotation powered subms-PSRs: low activity


•Total spindown power:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} I \Omega^2 \right) = I \Omega \dot{\Omega} \sim M R^2 \Omega \dot{\Omega} \sim R^5 \Omega \dot{\Omega}$$

subms-PSRs with same $d\Omega/dt$ could be ~10⁻⁴ that of msPSRs, if $R \sim 1$ km ($M\sim10^{-3}$ Msun).

- •Subms-PSRs are very low active in their magnetosphere.
- •Their radio luminosity would be much lower than that of msPSRs if the η -coefficient is the same.
- → More sensitive radio telescope is necessary!

Radio luminosity: normal-PSRs vs. ms-PSRs

 L_{1400} : L at 1400 Hz $\zeta \equiv (dP/dt)/P^3$ relevant to charge

- : normal PSRs
- : msPSRs, P<15ms

Subms-PSRs?

The reason that we have still not detected radio sub-msPSRs?

Xu et al. (2006)

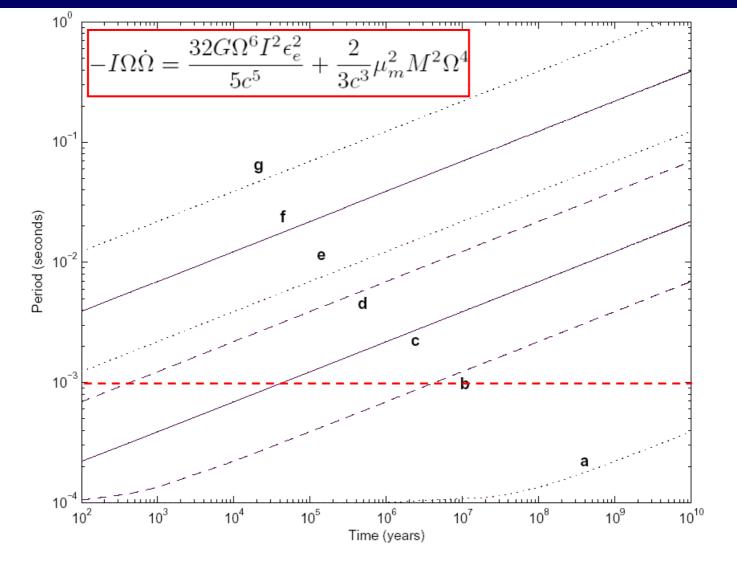


Figure 1. Gravitational-wave-radiation-induced period evolution of sub-millisecond pulsars with an initial period $P_i = 0.1$ ms for different parameters of equatorial ellipticity, ϵ_e , and effective radius, $R_{\rm eff}$, but a fixed density $\rho = 4 \times 10^{14}$ g/cm³. The lines are labelled from "a" to "g". "a": $\epsilon_e = 10^{-3}$, $R_{\rm eff} = 0.01$ km; "b": $\epsilon_e = 10^{-3}$, $R_{\rm eff} = 0.1$ km; "c": $\epsilon_e = 0.01$, $R_{\rm eff} = 0.1$ km; "d": $\epsilon_e = 0.1$, $R_{\rm eff} = 0.1$ km; "e": $\epsilon_e = 10^{-3}$, $R_{\rm eff} = 1$ km; "f": $\epsilon_e = 0.01$, $R_{\rm eff} = 1$ km; "g": $\epsilon_e = 0.1$, $R_{\rm eff} = 1$ km.

Magnetospheric activity of submsPSRs

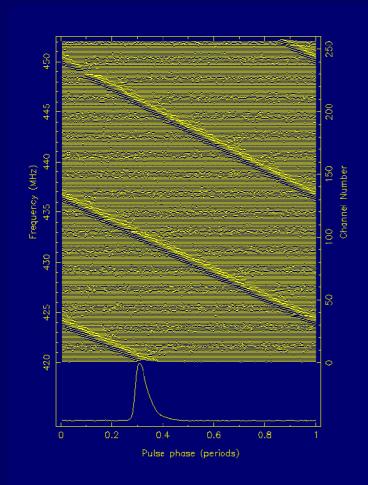
3. Magnetospheric activity of sub-millisecond pulsars

The potential drop in the open-field-line region is essential for the magnetospheric activity of sub-millisecond pulsars. In case of approximately constant $\mu_{\rm m}$, the potential drop between the center and the edge of a polar cap can be expressed as⁸,

$$\phi = \frac{64\pi^3}{3c^2} \bar{B}\mu_m R_{\text{eff}}^3 P^{-2} \simeq 2.2 \times 10^{13} (\text{volts}) \ \mu_{m-6} R_{\text{effkm}}^3 P_{\text{ms}}^{-2}, \tag{8}$$

where the bag constant $\bar{B} = 60 \text{ MeV/fm}^3 \simeq 10^{14} \text{ g/cm}^3$ (i.e., $\rho/4$). It is well known that pair production mechanism is a key ingredient for pulsar radio emission. A pulsar is called to be "death" if the pair production condition can not be satisfied. Although a real deathline depends upon the dynamics of detail pair and photon production, the deathline can also be conventionally taken as a line of constant potential drop ϕ . Assuming a critical drop $\phi_c = 10^{12}$ volts: a sub-millisecond pulsar with P = 0.1 ms could still be active even its radius is only 0.08 km, in case of $\mu_{m-6} = 1$.

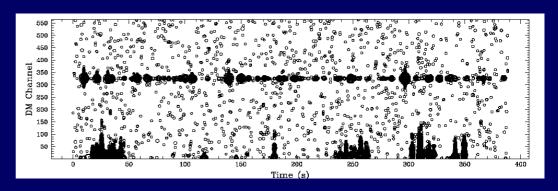
Summary


Introduction: PSRs & spin

Activity of subms-PSRs

√ To find a subms-PSR

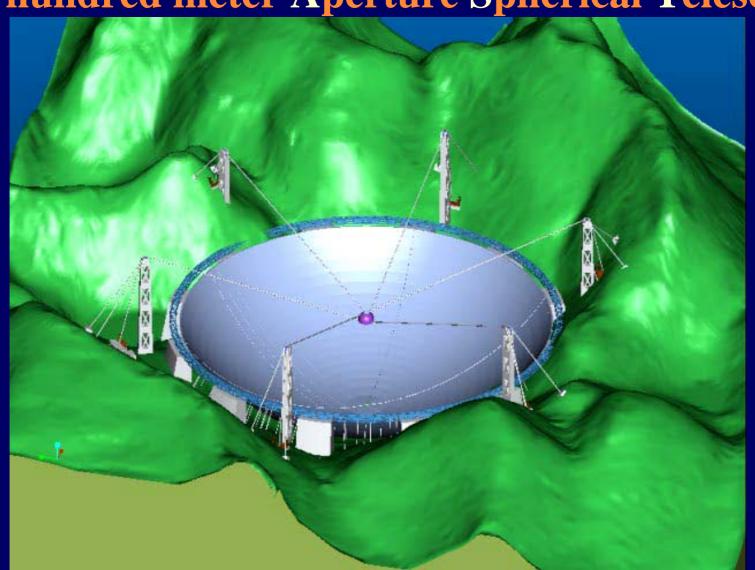
Conclusions


Observation of radio pulsars

$$dt = 4 \times 10^6 \left(v_{\text{low}}^{-2} - v_{\text{high}}^{-2} \right) \cdot DM$$

De-dispersion

FFT ⇒ P-search DM-search P-DM


Sensitivity:

$$S_{\min} = \frac{C(T_{\text{sys}} + T_{\text{sky}})}{G\sqrt{N_{\text{p}}t_{\text{int}}\Delta\nu}}\sqrt{\frac{W}{P - W}}$$

-Data: Huge

To find submsPSRs by FAST?

Five hundred meter Aperture Spherical Telescope

What if a submsPSR is found?

- Pulsars should be a special kind of NSs (QSs!) if discovering P < 0.8 ms.
- •Understand more about Nature: formation-origin, cosmic evolution
- ·Higher precision of PSR timing:

$$\sigma_{ ext{TOA}} \propto rac{T_{ ext{sys}}}{\sqrt{t_{ ext{int}}\Delta
u}} rac{P(W/P)^{3/2}}{S_{ ext{mean}}}$$

GWR background detection

Time standard based on PSR timing

Summary

Introduction: PSRs & spin

Activity of subms-PSRs

To find a subms-PSR

✓ Conclusions

Conclusion

- •To find a submillisend PSR is *clear* evidence for quark stars. If successful, it will certainly improve our understanding of the elementary strong interaction between quarks.
- Because of low masses, the radio luminosity of subms-PSRs should be low, but X-ray pulsation may be significant for detection.
- •To search submsPSRs is supposed to be one of the key projects in the future FAST program.

Thanks a lot and hope to receive your comment-suggestion Any time

Email: r.x.xu@pku.edu.cn