Multi-wavelength Studies on Microquasars and AGNs

Xue-Bing WU (wuxb@pku.edu.cn) (Dept. of Astronomy, Peking University)

Dept. of Astronomy, PKU

- 1960, Astronomy division in geophysics department;
 undergraduate program
- 1979, Postgraduate program
- 1998, CAS-PKU Beijing Astrophysics Center
- 2000, Department of Astronomy established (Chair: Prof. Jiansheng Chen)
- April 2008, 9 faculty members + 30 postgraduates + 40 undergraduates

Cosmology & Galaxy formation: Jiansheng Chen, Zu-Hui Fan

AGN & BH: Fukun Liu, Xue-Bing Wu

Planet, Star & ISM: Xiao-Wei Liu, Eric Peng, Hua-Wei Zhang

Particle Astrophysics: Ren-Xin Xu

Astrophysics Technology: Jian Zhang

Emeritus: Guojun Qiao, Xinji Wu & Yuefang Wu

Outline

- Introduction
- Broadband SED of Microquasars
- Radio/X-ray correlation of AGNs
- CO line width and M- σ relation of quasars
- Summary

Main Collaborators:

R. Wang (PKU), Z. Y. Li (PKU); M. Z. Kong(HNU); W. Cui (Purdue), Y.Q. Xue (Purdue)

1. Introduction

BH systems at different scale:

Common ingredients: BH, accretion disk, jet, ...

Mirabel (2004)

Multi-wavelength study of Microquasars

Radio: Jet IR: Companion Opt: Companion X-ray: Accretion, Jet Gamma-ray: Jet

(Xue, Wu & Cui 2008, MNRAS, 384,440)

Multi-wavelength study of AGNs

Radio: Jet

- **IR: Torus, Host-G., Jet**
- **UV/Opt:** Accretion, Jet, Host-G.
- **X-ray: Accretion, Jet**
- Gamma-ray: Jet

2. Broadband SED of Microquasars

H 1743-322 **XTE J1550-564** 10-10-4 10⁻⁰ } 10-1 10-**+ 10⁻⁸ 10-# 10-14 р Ц Х ۲ ۲ 10-# 10-10 10-1 10¹⁸ 10¹⁴ 10¹⁸ 10¹⁸ 10¹⁰ 10¹⁰ 10[#] 10³⁰ 10" (0^{)||} 10¹⁰ v (H1) v (H)

(Xue, Wu & Cui 2008)

Flux density (Jy)

Table 3. Model parameters for the western jet 'blob' in XTE J1550-564

Case Number	B (Gauss)	$\frac{E_{\rm tot}/m_ec^2}{(\rm cm^{-3})}$	$\gamma_{ m max}$	p
(a)	0.016	25.1	1.6×10^{7}	2.31
(b)	0.032	79.5	5.0×10 ⁸	2.32
(c)	0.002	1.2×10^{3}	3.0×10^{7}	2.32
(d)	0.032	0.06	1.0×10^{4}	2.20
(e)	0.003	4.0×10^{5}	1.0×10^{5}	2.30
(f)	8.0×10^{-9}	1.5×10^{11}	1.6×10^{6}	2.30

イレ

Radio/X-ray correlation in Microquasars

Radio/X-ray correlation in Microquasars

=>Radio/X-ray correlation is frequency dependent and probably evolving with time

 $\langle \downarrow \downarrow \rangle$

3. Radio/X-ray correlation of AGNs

BH: Mass (M)

- Accretion flow: X-ray emission(L_X)
- Jet: Radio emission(L_R) (+L_X in some cases)
- Any common relationship among L_R, L_X and M?

A fundamental plane of black hole activity

(Merloni, Heinz, & Di Matteo, 2003, MNRAS)

 $\log L_{\rm R} = (0.60^{+0.11}_{-0.11}) \log L_{\rm X} + (0.78^{+0.11}_{-0.09}) \log M + 7.33^{+4.05}_{-4.07}$

Test with a uniform sample from multi-wavelength surveys

- Problems of previous studies
 - non-uniform samples
- Our sample 1
 - a relatively uniform, low-z radio and X-ray emitting broad line AGN sample selected from SDSS(DR1)-RASS-FIRST surveys (Wang, Wu & Kong 2006, ApJ, 645,890)
 - including 76 radio-loud and 39 radio-quiet AGNs
- Our sample 2
 - 725 SDSS(DR5)-RASS-FIRST broad line AGNs, including 498 radio-loud and 227 radio-quiet AGNs (Li, Wu, & Wang 2008, ApJ, submitted)

AGN black hole mass estimates based on SDSS optical spectra

Virial law (Kaspi et al. 2000, 2005)

$$M = 1.464 \times 10^{5} (\frac{R_{BLR}}{light - days}) (\frac{V_{FWHM}}{10^{3} km s^{-1}})^{2} M_{\odot}$$

R-L_{H β} relation (Wu et al. 2004, A&A)

 $Log R_{BLR}(light - days) = (1.381 \pm 0.080) + (0.684 \pm 0.106) Log (L_{H\beta}/10^{42} erg s^{-1})$

McLure -Jarvis (2002) relation

$$M = 3.37 (\frac{\lambda L_{3000}}{10^{44} ergs^{-1}})^{0.47} (\frac{V_{FWHM,MgII}}{kms^{-1}})^2 M_{\odot}$$

$$Log(\frac{L_r}{10^{40} erg\,s^{-1}}) = \xi_{RX} Log(\frac{L_X}{10^{44} erg\,s^{-1}}) + \xi_{RM} Log(\frac{M}{10^8 M_{\odot}}) + Const.$$

Table 3. The derived fundamental plane relation

Weak/no correlation with M

Subsample	Number	ξ_{RX}	ξ_{RM}	Const.	σ_r
Total	115	1.33 ± 0.15	0.30 ± 0.18	$-0.40 \pm 0.14 \\ -0.17 \pm 0.21 \\ -0.77 \pm 0.07 \\ 7.33^{+4.05}_{-4.07}$	0.89
Radio loud	76	1.39 ± 0.17	0.17 ± 0.21		0.77
Radio quiet	39	0.85 ± 0.10	0.12 ± 0.13		0.38
Merloni et al. (2003)	-	0.60 ± 0.11	$0.78^{+0.11}_{-0.09}$		0.88

For radio-quiet sources:

Different slopes

$$Log(\frac{L_r}{L_{Edd}}) = (0.86 \pm 0.10) Log(\frac{L_X}{L_{Edd}}) + (-5.08 \pm 0.19)$$

Difference between radio-loud and radio-quiet AGNs in the radio--X-ray correlation

For canonical synchrotron spectrum of p=2, $\alpha_r=0.5$, $\alpha_x=1$ \longrightarrow $L_R \propto M^0 L_X^{1.42}$

Consistent with our results for radio-loud AGNs!

Check with a larger sample of 725 SDSS(DR5)-RASS-FIRST AGNs (Li, Wu & Wang 2008)

Radio -X-ray correlation for different X-ray origins

(Yuan & Cui 2005, ApJ)

Consistent with our results obtained with a uniform AGN sample! (Radio-quiet AGN has a shallower slope than radio-loud AGN)

4. CO line width and M- σ relation of quasars

Physics of the black hole bulge relation:

Close tie between BH and galaxy formation & evolution
Feedback scenario (Silk & Rees 1998; King 2003, 2005;...)
Two-direction starburst feedback model: Xu, Wu & Zhao (2007 ApJ, 664,198); Xu & Wu (2007 ApJ, 667,92)

Tremaine et al. (2002)

M - σ relation of quasars

For quasars: direct measurement of σ is difficult; σ =FWHM([OIII])/2.35 is usually adopted (Nelson 2000; Shields et al. 2003); galaxy growth is contemporaneous with black hole growth up to z=2~3 (however, Woo et al. 2008)

PG quasars with measured σ

10

- Dasyra et al. (2006, ApJ)
 - Long integration near IR H-band spectroscopy with VLT

Source	σ (km s ⁻¹)
PG 0007+106	201 (±61)
PG 0050+124	188 (±36)
LBQS 0307-0101	207 (±49)
PG 1119+120	162 (±28)
PG 1126-041	194 (±29)
PG 1211+143	
PG 1229+204	162 (±32)
PG 1404+226	237 (±52)
PG 1426+0158	185 (±67)
PG 1617+175	183 (±47)
PG 2130+099	172 (±46)
PG 2214+139	156 (±18)

100 σ (km/s)

SDSS J1148+ 5251 (z=6.42)

High-z Quasars

Walter et al. (2004)

Fig. 2 The velocity integrated CO 3-2 emission from J1148+5251 imaged by the VLA at 0.4" resolution (Walter et al. 2004). The total flux is 0.15 Jy km s⁻¹, and the source is clearly resolved, with a full extend of about 1". The figure is about 3" on a side.

- CO molecular line detected for a number of hi-z quasars (Solomon & Vanden Bout 2005 ARA&A)
- CO line width as a surrogate for σ (Shields et al. 2006 ApJ, 641, 683)
- σ=FWHM(CO)/2.35

(Shields et al. 2006)

High-z Quasars

- Can we use σ=FWHM(CO)/2.35 ?(No)
- A test with CO detected 33 Seyfert galaxies (Wu 2007, ApJ, 657, 177)
- A better correlation using inclination-corrected line width

FWHM(CO)/sin $i = -(67.16 \pm 80.18) + (3.62 \pm 0.68) \sigma$

 CO molecular disk coplanar with the galaxy disk (Heckman et al. 1989)

Wu (2007, ApJ)

High-z Quasars

• Assuming inclination ~15° for hi-z quasars, we can re-estimate σ values using the inclination-corrected CO line width and study the M - σ relation at Hi-z

• Small inclinations (~15°) are also probably needed to explain the narrowness of CO line of hi-z quasars compared with the submillimeter galaxies (SMG) (Greve et al. 2005; Carilli & Wang 2006)

5. Summary

- Multiwavelength data collected with powerful instruments are crucial to probe the physics nature of AGN and Microquasars.
- Radio/X-ray correlation in Microquasars may not be universal, reflecting a complex accretion-jet physics.
- BH fundamental plane of AGNs seems independent on the BH mass, and is different for radio-loud and radioquiet AGNs. This may be related to different origins of X-ray emissions.
- Inclination-corrected CO line width can be taken as a surrogate for the stellar velocity dispersion. M-σ relation of nearby quasars is consistent with the local one. However, it's too early to say too much on the M-σ relation at hi-z universe.