

Gamma-Ray Large Area Space Telescope

VLBI Studies of Relativistic Jets in the GLAST Era and possibilities for US-China collaboration

Teddy C.C. Cheung NASA Goddard Space Flight Center for the GLAST-LAT collaboration

Teddy.Cheung@nasa.gov 21 April 2008

Anticipation

Scheduled launch around May 16 on Delta II Heavy Cape Canaveral, Florida

VEST

GLAST Large Area Telescope (LAT)

- Large Field of View: 2.4 Steradian
 ~20% of sky (>4x EGRET)
- Source localization: 0.4-10 arcmin (>3x EGRET)
- Effective area: 8000 cm² (>5x EGRET)
- Energy range: 20 MeV to 300 GeV (E>30 GeV unexplored)
- >30-100 times better sensitivity than EGRET
- 5 yr mission (10 yr goal)

GLAST : Key Science Areas

AGN

Diffuse Emission Dark Matter Annihilation GRBs Solar System Pulsars, SNRs Galactic Transients (microquasars) All Sky Catalog Unidentifed Sources

LAT Collaboration

307 members including

50 postdocs, 59 grad students

from GLAST data challenge 2 see http://antwrp.gsfc.nasa.gov/apod/

from GLAST data challenge 2 see http://antwrp.gsfc.nasa.gov/apod/

GLAST: the First Year

- The first year of science operations will be an all-sky survey. Public data include:
 - Weekly data release on 22 high-priority blazars and a microquasar (LS+61 303) through the GLAST Science Support Center (GSSC) at GSFC
 - Public data release for bright transients (>2 x 10^{-6} photons cm⁻² s⁻¹)
 - All GRB data public
- About 6 months into cycle 1:
 - LAT team will release a list of detected sources to assist investigators prepare
 Cycle 2 proposals; this list is not meant for research purposes during Cycle 1
 - Workshops for guest observers on science tools and mission characteristics for Cycle 2 proposal preparation
- Observing plan in subsequent years driven by Guest Observer proposal selections by peer review (default is sky survey mode).
 - Get involved in Cycle 1: multi- λ coordinator (<u>David.J.Thompson@nasa.gov</u>)
- Get ready for Cycle 2: ground-telescope time, \$\$ support for U.S. investigators

The γ-ray / VLBI Connection

- EGRET blazars have typically faster superluminal motions
- EGRET flares associated (lag? or lead?) with superluminal radio ejections (Jorstad, Marscher et al. monthly VLBA 43 GHz)
- Consistent with relativistic beaming but details vague

Beyond 2-10k Blazars: a 3-5 yr Plan

- Low luminosity AGN (Seyferts) as **γ**-ray sources
- Radio galaxies `misaligned' blazars
- Young radio galaxies as γ-ray sources (CSOs)
 - Doubling current samples with VCS data
- Testing/extending the blazar sequence
 - Large new faint BL Lac (HBL?) samples, Swift follow-up
- Galactic transients, unidentified sources
 - Campaigns on known and identifying new microquasars
 - VLA/VLBA and Prompt eVLBI followup

LS I+61 303 VLBA 8.4 GHz Full orbital period (26.5 days) Dhawan et al. (2006)

VLBA Brightness Temperatures

Low(er) Luminosity Blazars?

Anderson, Ulvestad, & Ho (2004)

 Seyferts have T_b > 10⁹ K radio cores (jet? or ADAF?); extra credit: nature of hard X-ray emission?

- Seyferts can have blazarlike properties (Zhou et al. 2007, Maraschi 2008)
- Extending the mass scale $(M_{bh} \sim 10^7 M_{sun})$

• Knot `HST-1' well-separated (~120 pc) from core

X-ray, optical, radio variability in HST-1

Harris et al. (2006, 2008) Aharonian et al. (2006) Cheung et al. (2007)

X-ray, optical, radio variability in HST-1

HST-1 lightcurves follow integrated TeV

Harris et al. (2006, 2008) Aharonian et al. (2006) Cheung et al. (2007)

Gamma-ray Production Site?

Cheung, Harris & Stawarz (2007)

Gamma-ray Production Site?

- Relationship between gamma and radio (optical, X-ray) emissions
- Jet powers, radiative efficiency, and relationship to accretion disk

VLA 1.4 GHz color (Fomalont et al. 1989) and WMAP 61 GHz contours (Nils Odegard)

VLA 1.4 GHz grayscale and ROSAT X-ray contours (Feigelson et al. 1995)

Electrons with $\gamma \sim 10^5$ in extended lobes!

Cheung (2007) Georganopoulos et al. in prep.

Much to Do... Join the Excitement!

Dawn Launch on Delta II Heavy 27 September 2007