Cutting-Edge Pulsar Science with the GBT and Next Generation Facilities

Scott Ransom

What's a Pulsar?

- Rotating Neutron Star!
- Size of city:
 - R ~ 10-20 km
- Mass greater than Sun:
 - M ~ 1.4 M_{sun}
- Strong Magnetic Fields:
 - B ~ 10⁸-10¹⁴ Gauss
- Pulses are from a "lighthouse" type effect
- "Spin-down" power up to 10,000 times more than the Sun's total output!

Last 10 yrs: A Pulsar Renaissance

- Low-noise, wide BW, receivers from 1-2 GHz
 - Can see much deeper into the Galaxy (i.e. volume)
 - Greatly reduced scattering and/or smearing
- Better telescope systems
 - Parkes Multibeam system
 - Arecibo upgrade
 - GBT
- Much better pulsar backends
 - Faster sampling
 - Better frequency resolution
- Improved computational resources

- Strong Field GR Tests:
 - PSRs around Sgr A* would be best (10-15 GHz)
 - Stellar-mass BH-PSR system(s) (400 MHz - 3 GHz)

The Double Pulsar J0737-3039

Relativistic Spin Precession of PSR B

Breton et al. 2008, submitted to Science

- Strong Field GR Tests:
 - PSRs around Sgr A* would be best (10-15 GHz)
 - Stellar-mass BH-PSR system(s) (400 MHz - 3 GHz)
- Equation of State of Matter at Supra-Nuclear Density
 - Masses of many MSPs

At least 4 GC eccentric binaries appear massive

Total system masses are determined by measuring the relativistic advance of periastron of the eccentric orbits.

Neutron Star Equations of State: Understanding matter at supra-nuclear densities.

Adapted from Lattimer and Prakash 2007, Physics Reports

- Strong Field GR Tests:
 - PSRs around Sgr A* would be best (10-15 GHz)
 - Stellar-mass BH-PSR system(s) (400 MHz - 3 GHz)
- Equation of State of Matter at Supra-Nuclear Density
 - Masses of many MSPs
- Direct detection of nanoHz Gravitational Waves
 - Need both new MSPs, more sensitivity, and reduction in systematics

High-precision MSP Timing for Gravitational Wave Detection

e.g. Detweiler, 1979 Hellings & Downs, 1983

The best timing MSPs (~100-500 ns RMS) can be used to search for a stochastic nHz gravitational wave background

Sensitivity comparable and complementary to Adv. LIGO and LISA! Need best MSPs and instrumentation.

NANOGrav, PPTA, EPTA

High-precision MSP Timing for Gravitational Wave Detection

e.g. Detweiler, 1979 Hellings & Downs, 1983

The best timing MSPs (~100-500 ns RMS)

Gravity Wave Source MBH Binary

Pulsar 2

Adv. LIGO and LISA!

Need best MSPs and instrumentation.

NANOGrav, PPTA, EPTA

New Instrumentation: GUPPI

- GreenBank Ultimate Pulsar Processing Instrument
- Based on Berkeley Wireless Research Center hardware (BEE2, iBOB) and CASPER tools
- 8-bit sampling
- 800MHz BW
- 4096 Channels
- Full Stokes
- Facility instrument

And eventually, wideband coherent dedispersion...

GUPPI: First-light on PSR B1821-24

- Strong Field GR Tests:
 - PSRs around Sgr A* would be best (10-15 GHz)
 - Stellar-mass BH-PSI (400 MHz - 3 GHz)
- Equation of State of M at Supra-Nuclear Den
 - Masses of many MS
- Direct detection of nanoHz **Gravitational Waves**
 - Need both new MSPs, more sensitivity, and reduction in systematics

All these things require more and better pulsars: **That means Searches**

12

1 /

16

Future Pulsar Observations

• With good pulsar backends and plentiful computing, pulsar obs are almost completely sensitivity limited:

Sensitivity
$$\propto \frac{T_{\rm sys}}{G\sqrt{t_{\rm obs}\,\rm BW}}$$

- For next "Renaissance" we need <u>collecting area</u>!
- Next sensitivity improvements will come from:
 - MeerKAT: Should be ~GBT in southern hemisphere
 - Searches may be difficult given 80 12m antennas
 - FAST: 2xArecibo in illuminated area

• How much new (i.e. southern) sky will be visible?

Pulsar Searching with Future Facilities

- Currently ~2,000 pulsars known (~200 MSPs)
 - Only a small fraction ~1% are useful for the science that we want to study
- ~100,000 potentially visible pulsars and RRATs (~20,000 MSPs)
- Most within 30° of Gal Ctr
- Most within 5° of Gal Plane
- SKA has the potential to find 20,000+ pulsars, FAST should find thousands

Simulation by J. Cordes

Some thoughts on PSR searches with FAST

- Multiple beams (10? 30?) will be essential for survey speed
- For periodicities, need integration times >100 sec
- Whole-sky searches will be impossible in short term
- Need to concentrate on where the pulsars are:
 - Galactic plane +/- few degrees latitude (1 3 GHz)
 - Mid-galactic latitudes (primarily in south) (0.3 1 GHz)
- Beam quality is not important for search only telescope gain
- Will need good pulsar backends for each beam (e.g. GUPPI)
- Data rates (~40MB/s/beam) and computational demands will be large, but much less than required for SKA!
- All the pulsars will need to be timed! That takes a lot of time...