Gravitational Wave Detection using Pulsar Timing

QuickTime?and a TIFF (LZW) decompress

Fredrick A. Jenet

Professor of Physics Center for Gravitational Wave Astronomy University of Texas at Brownsville

> QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Collaborators

George Hobbs ATNF/CSIRO Australia

李柯伽 KJ Lee CGWA/Peeking U.

Dick Manchester ATNF/CSIRO Australia

Willem Van Straten Swineburne Australia

文中略 Si Zhonglue Wen Beijing Astronomical Observatory

Shane L. Larson Weber State

Andrea Lommen (Franklin & Marshall)

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Pulsar Timing Array Consortia

Parkes Pulsar Timing Array ATNF, Swinburne, CGWA European Pulsar Timing Array Jodrell Bank, Effelsberg, SRT NANOGrav (North American Nano-Hertz) **GRAVitational wave observatory**) Arecibo, Greenbank, + 11 research institutions China Pulsar Timing Array

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

International Pulsar Timing Array Workshop

- Held at the Arecibo Radio Observatory on August 1st-2nd 2008.
 - Primary Goal: To organize the efforts of researchers working in the field.
 - Details to be announced soon.

QuickTime?and a

TIFF (LZW) decompressor

are needed to see this picture.

Radio Pulsars

QuickTime?and a

TIFF (LZW) decompressor are needed to see this picture.

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB

5

Gravitational Waves

"Ripples in the fabric of space-time itself"

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$G_{\mu\nu}(g) = 8 \pi T_{\mu\nu}$$

$$-\partial^2 h_{\mu
u}/\partial^2 t +
abla^2 h_{\mu
u} = 4\pi T_{\mu
u}$$

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB

QuickTime?and a TIFF (LZW) decompres

6

2008-4-29

The Big Picture of G-wave Detection

Science in the Nano-Hz Gravitational Wave Band

- Binary Supermassive Black Hole formation and Evolution
- Equation of State of the Early Universe (Quintessence)
- Study of Cosmic Strings

Testing GR by measuring the polarization properties of GWs.

2008-4-29

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

How do we detect/limit GW using radio pulsars?

Consider small perturbations from a flat space-time:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(t, x^i)$$

The slight change in the rate at which pulsar pulses arrive at Earth is given by: $\frac{\delta\nu}{-} = -\mathcal{H}^{ij}(h_{ij}(t_e, x_e^i) - h_{ij}(t_e - d, x_p^i))$

Pulsar timing observations measure the timing residuals:

$$R(t) = -\int_0^t \frac{\delta \nu(t)}{\nu} dt \qquad R \approx \frac{h}{\Omega}$$

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Sensitivity of pulsar timing to GWs

h

Detecting a single supermassive black hole binary

The amplitude of a gravitational wave strain produced by a SMBH binary is given by:

Now, include the effects of cosmology:

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB QuickTime?and a

TIFF (LZW) decompres

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

2008-4-29

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB

QuickTime?and a TIFF (LZW) decompressor re needed to see this picture.

12

Individual Supermassive Black Hole Binaries

Probability of detecting individual sources:

20 Pulsars, 100 ns: < 2%5 Pulsars, 10 ns: > 90%

(Preliminary results by 文中略 (Zhonglue Wen))

QuickTime?and a

TIFF (LZW) decompressor

are needed to see this picture.

Limits on the rate

- In the context of Supermassive black hole binaries, these upper bounds may be cast in terms of the coalescence rate.
- Stochastic Constraint:

TIFF (LZW) decompressor are needed to see this picture.

Poission Constraint:

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Stochastic SMBH Coalescence Rate Constraint

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

文中略 (Zhonglue Wen)

又中哈 (Zhongiue vv

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB QuickTime?and a

2008-4-29

Poisson SMBH Coalescence Rate Constraint

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

文中略 (Zhonglue Wen)

QuickTime?and a TIFF (LZW) decompressor needed to see this picture. QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

2008-4-29

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

The Stochastic Background (Definitions of various quantities)

$$h_{\mu\nu} = \operatorname{Re}\left[\sum_{j} A_{\mu\nu_{j}} e^{i\vec{k_{j}}\cdot\vec{x} - i\omega_{j}t}\right]$$

The stochastic background is made up of a sum of a large number of plane gravitational waves. The power spectrum of h is given by $S_h(f)$ and satisfies:

$$\int_{0}^{\infty} S_{h}(f) df = rac{1}{2} < h_{\mu
u}(t) h^{\mu
u}(t) > h_{c}(f) = \sqrt{fS_{h}(f)}.$$

 $h_c(f)$ is the 'characteristic strain' spectrum and is defined by the above equation.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

The Stochastic Background Characterized by its "Characteristic Strain" Spectrum:

 α

$$\Omega_{gw}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c(f)^2 = \frac{2\pi^2}{3H_0^2} A^2 \left(\frac{f}{f_{1yr}}\right)^{2\alpha+2}$$

Table 1: The expected parameters for predicted stochastic backgrounds

 $h_{a}(f) = A \left(\frac{f}{f} \right)$

Model	А	α	References
Supermassive black holes	$10^{-15} - 10^{-14}$	-2/3	Jaffe & Backer (2003)
			Wyithe & Loeb (2003)
			Enoki et al. (2004)
Relic GWs	$10^{-17} - 10^{-15}$	-10.8	Grishchuk (2005)
Cosmic String	$10^{-16} - 10^{-14}$	-7/6	Maggiore (2000)

2008-4-29

Fredrick Jenet, Center for Gravitational Wave Astronomy, UTB QuickTime?and a

TIFF (LZW) decompresso needed to see this picture

Detecting a Stochastic Background of GWs

Pulse arrival time fluctuations from different pulsars will be correlated:

$$C(\theta_{ij}) = \langle R_I | R_j \rangle$$

QuickTime?and a

TIFF (LZW) decompressor

are needed to see this picture.

QuickTime?and a

19

Polarization Properties of GWs

- GR predicts only two polarization modes.
- A general metric theory has 4 more.
- Pulsar timing is better suited to determine the polarization structure of a GW than LIGO.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

Testing GR with the stochastic background

- Different polarization modes will have different curves.
- The actual correlation curve will be a weighted sum of these curves.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

李柯伽 KJ Lee

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

How many pulsar do we need to detect the background?

Assuming 100 nanosecond precision with 5 years of observing, one needs at least 20 pulsars.

QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.

How many pulsars do we need to discriminate the different modes?

- Assuming 100ns RMS, 10 years, about 100 pulsars will needed.
 - Results from work by 李柯伽 (KJ Lee)

2008-4-29

Summary

- Nature has created its own gravitational wave observatory in the form of Radio pulsars.
 - We can use the properties of radio pulsars to directly detect gravitational waves.
 - $R \approx h / \omega$
 - Researchers are currently working to improve the sensitivity of such a detector.
 - The Parkes pulsar timing array project (20 pulsar, 100 ns accuracy, 5 years)
- Upper bounds may be placed using a small number of pulsars
 - Place limits on the existence of the proposed supermassive binary black hole in 3C 66B
 - Limits may be placed on a Stochastic background:
 - $h_c(f=1/yr) < 1.4 \times 10^{-14} \Omega_a w{f=1/20yr}h^2 < 10^{-8}$
- Observations of Multiple pulsars are need to definitively detect gravitational waves
 - Look for correlations in the pulsar timing residuals to detect the presence of a stochastic background
 - A minimum of 20 pulsars, 5 years, 100 nano-second precision.

24

QuickTime?and a

TIFF (I ZW) de