Development of A THz FTS for Site Testing at Dome A

Sheng-Cai Shi¹

S. Paine², Q.J. Yao¹, X.X. Li¹, X.G. Zhang¹, Z.H. Lin¹, H. Matsuo³, J. Yang¹, Q.Z. Zhang²

A collaboration between PMO¹ and CfA²

OUTLINE

4 Introduction

4 Design of the System

4 Sensitivity & Calibration

Control/DAQ System & Software

4 Timeline for FTS Development

4 Conclusion

Why do THz Astronomy? electronics photonics Size~ λ $h v - k_B T$ Near by z<1.5 Deep Field z>1.5 ~50% photon energy after **CMB** cold (10K~1THz) objects in formation early distant objects (dust CSO¹⁴ Spectrum 19 f Orion reemission and red shift)

X

620

660 680 Rest Frequency (GHz)

- deep inside (seeing through) of objects, optically thin @ THz
- rich molecular rotation lines

Good THz Sites on the Earth

Photo Credit: Randy Landsberg

Dome A: the Best THz Site on the Earth?

FTS vs Radiometer

	Band- width	Measurement Method	Temp Calibration	Accuracy	Freq Resolution	Other Freq
Radio- meter	single freq	tipping with z, $P_{IF}(z) \rightarrow \tau_0$	not needed	good with small $ au_{\it 0}$	high	AM needed
FTS	large	$T_{sky}(\nu) \text{ at fixed} \\ z \rightarrow \tau_z(\nu)$	needed	reliable for <i>τ</i> up to 5	low	AM not needed
transmittance 0 0	1 	pwv: 75μm 2 4	6 8	10	12	

- unattended operation
- Iong-duration (~1yr)
- Largest bandwidth for FTSs ever used for site testing
- **no LNe used** \rightarrow *no low-temp calibration*

Cryogenically cooled detectors cannot be used \rightarrow *limited detection sensitivity*

Design of the FTS System - Schematic of the System

Design of the FTS System

-System Specs

Mode	Fast scan	
Freq. Range	0.75-15THz (LB: 0.75-3.5THz,	
	HB: 3.5-15THz)	
Freq. Resolution	<10GHz	
Beam Aperture	>75mm	
DLATGS NEP	~10 ⁻¹⁰ W/Hz ^{0.5}	
Time/Spectrum	10mins	
MPI Volume	0.7mx0.7mx0.3m	
Power	<300W	

Design of the FTS System - Optics Calculation for MPI

7.	26E-003
6.	53E-003
5.	80E-003
5.	08E-003
4.	35E-003
з.	63E-003
2.	90E-003
2.	18E-003
1.	45E-003
7,	26E-004
Ø	00E+000

Design of the FTS System - "Mailbox" Subsystem

no tipping for simplicity

calibration load (LT) & snow cleaning structure integrated

tilted window plus brush adopted for cleaning snow on the window

■ two windows and thermal isolation adopted → less than 20W heat dispersion

HDPE or LDPE window adopted for large bandwidth

LT-load radiation temp precisely measured

driver & oil specially chosen for reliability

Estimation of Sensitivity

Parameters for Calculation

	Low-band	High-band
Freq Range (THz)	0.5~3.5	3.5~15
Resolution (GHz)	10	10
Optics Efficiency	0.1	0.1
Beam Diameter (cm)	7.5	7.5
Throughput (cm ² sr)	0.792	0.185
Detector Area (cm ²)	0.126	0.029
Detector NEP (W/Hz ^{0.5})	3.5e-10	1.7e-10

基于DLATGS室温探测器可 实现S/N>10

Scheme of Calibration

Control/DAQ System & Software

Timeline for FTS Development

- End of 2008: Proposal & concept design
- 2009/1-3: System design and contract negotiation
- 2009/4: Contracted with QMC/Bluesky for MPI and DLATGS detectors
- 2009/4-7: Subsystem design & starting construction
- **2009/8: System integration & lab testing**
- **2009/9: further testing, training, preparing installation/operation manual**
- **2009/10: deploying to expedition team**

Conclusion

- A THz FTS system for Dome A has been designed,
- Fabrication of subsystems will be completed in July,
- Lab testing and training will start early August,
- Hopefully the FTS will be deployed in time for 2009 Dome A expedition

Valuable discussions with Ken Wood of QMC, D. Naylor and B. Gom of Bluesky, Plato team, and CCAA team.