BOSS: Ground-Based Stage III BAO Experiment

BigBOSS: Ground-Based Stage IV BAO Experiment

http:/bigboss.lbl.gov

1

David Schlegel, Dome A, 21 Jul2009

Science Goals

Test the standard model

Quantum fluctuations -- early Universe permitted because $\Delta E\Delta t < \hbar$ Early Universe inflation by 10^{55} Leads to scale-free fluctuations Gravitation growth of structure (Einstein gravity)

N-body simulation credit: C4 collaboration, Thaker & Couchman

http:/bigboss.lbl.gov

2

David Schlegel, Dome A, 21 Jul2009

Science Goals

Test the standard model

Quantum fluctuations -- early Universe permitted because $\Delta E\Delta t < \hbar$ Early Universe inflation by 10^{55} Leads to scale-free fluctuations Gravitation growth of structure (Einstein gravity)

N-body simulation credit: C4 collaboration, Thaker & Couchman

http:/bigboss.lbl.gov

2

David Schlegel, Dome A, 21 Jul2009

http:/bigboss.lbl.gov

3

David Schlegel, Dome A, 21 Jul2009

Baryon Acoustic Oscillations (BAO)

Sound waves traveled 500 million light years in the plasma of the early Universe, then abruptly stopped.

Map of Universe at 400,000 years (CMB)

http:/bigboss.lbl.gov

Baryon Acoustic Oscillations (BAO)

Sound waves traveled 500 million light years in the plasma of the early Universe, then abruptly stopped.

http:/bigboss.lbl.gov

Baryon Acoustic Oscillations (BAO)

Precision dark energy probe from BAO scale **Inflation probe** from non-gaussian fluctuations

Better than Planck or JDEM

These fluctuations of 1 part in 10⁵ gravitationally grow into...

http:/bigboss.lbl.gov

...these ~unity fluctuations today

Baryon Acoustic Oscillations (BAO) Precision dark energy probe from BAO scale Inflation probe from non-gaussian fluctuations Better than Planck or JDEM These fluctuations of 1 part in 10^5 ...these ~unity fluctuations today gravitationally grow into... Universe at 300,000 years old (CMB) Universe today (galaxy map) standard rule

http:/bigboss.lbl.gov

BAO and dark energy

What we like...

- Like supernovae, a geometrical probe of the expansion rate (and dark energy) \geq
- The acoustic oscillation scale depends on the sound \geq speed and the propagation time
- Anchored at recombination (z=1088) by the CMB \geq
- Orientation of ruler provides two different probes \geq
 - Transverse rulers probes $D_A(z)$ \triangleright
 - Line of sight rulers probe H(z)
- These depend on the matter-to-radiation ratio \geq $(\Omega_{\rm m}h^2)$ and the baryon-to-photon ratio $(\Omega_{\rm b}h^2)$
- Only need to make 3D maps (angles + redshifts) \geq

- Ruler is inconveniently long \rightarrow 150 Mpc = 450 million light years \geq
- Statistical measure of a small signal \rightarrow Requires mapping millions of objects \triangleright
- There is a cosmic variance limit... once we reach that, we're done! \geq

http:/bigboss.lbl.gov

BAO and dark energy

BAO and dark energy

Spectroscopic surveys, not photometric!

BAO from imaging-only surveys smears signal DETF figure-of-merit reduced by 5X

BAO from 3-D maps: SDSS

Finally technologically possible

Sloan Digital Sky Survey (SDSS) telescope \Rightarrow **Optical design** for large focal plane: 7 deg²

 \Rightarrow **Fiber-fed** spectrographs: 640 redshifts simultaneously

SDSS telescope, Apache Point, New Mexico

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

Next-Generation BAO Experiment: BOSS == Baryon Oscillation Spectroscopic Survey

A variety of facilities considered for next-gen BAO experiment:

Lick 3-m, Keck 10-m, MMT 6.5-m, ...

SDSS telescope secured for next-gen BAO experiment:

July 2006: Competitive proposal to use (upgraded) SDSS telescope for next-gen BAO Nov 2006: BOSS proposal selected for all dark+grey time for 2009-2014 Feb 2007: DOE R&D proposal for upgrading SDSS spectroscopic system Sep 2007: Commitment from Alfred P. Sloan Foundation June 2008: Commitment from NSF Jan 2009: Commitment from DOE

Partners:

- Univ. of Arizona
- Brazilian Participation Group
- Cambridge Univ.
- Case Western Univ.
- Univ. of Florida
- French Participation Group
- Univ. of Heidelberg
- Johns Hopkins Univ.
- IMPU Institute (Japan)
- Korean Institute for Advanced Study •
- Lawrence Berkeley Lab
- Los Alamos National Lab
- MPA Garching

- Michigan State Univ/JINA
- New Mexico State Univ.
- New York Univ.
- Ohio State Univ.
- Penn State Univ.
- Univ. of Pittsburgh
- Univ. of Portsmouth
- Astronomical Institute Potsdam
- Princeton Univ.
- UC Santa Cruz
- Univ. of Utah
- Univ. of Virginia
- Univ. of Washington

http:/bigboss.lbl.gov

11

BOSS == Baryon Oscillation Spectroscopic Survey at SDSS telescope

All targets selected from SDSS

Requires 10,000 deg² footprint

→ SDSS imaging of additional 2000 deg² in Fall 2008

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

BOSS == Baryon Oscillation Spectroscopic Survey at SDSS telescope

Two simultaneous spectroscopic surveys from 2009-2014

→ BAO from 1.3 million galaxies at z=0.3, 0.6

 \rightarrow BAO from 160,000 QSOs at 2.2<z<3

http:/bigboss.lbl.gov

BOSS == Baryon Oscillation Spectroscopic Survey at SDSS telescope

Monday, July 20, 2009

BOSS status

Largest field-of-view of any large tele cope -- DONE!

Swap gratings for VPH

http:/bigboss.lbl.gov

1000 small-core fibers to replace existing (more objects, less sky contamination)

Software development underway

Replace red CCDs w/red-sensitive **LBL/SNAP CCDs**, making it possible to go to higher-z

Replace blue CCDs w/UV-sensitive e2v CCDs, making it possible for Ly at $z=2.3 \rightarrow 3$

David Schlegel, Dome A, 21 Jul2009

BOSS status

Observing Plan:

Fall 2008 + Fall 2009: Complete imaging survey Summer 2009: Commissioning Sep 2009: Begin survey July 2014: End survey

http:/bigboss.lbl.gov

BOSS: Baryon Oscillation Spectroscopic Survey Complements Imaging-Only Surveys

<u>http:/bigboss.lbl.gov</u>

BigBOSS: The Ground-Based Stage IV BAO Experiment

Submitted to Astro2010 April, 2009

Science Goals: 50 million redshifts

Sensitivity to new physics scales as volume surveys -- # of modes

Science Goals: 50 million redshifts

Simultaneous spectroscopic surveys from 2015-2025
→ BAO from 50 million galaxies at 0.2 < z < 2.0
→ BAO from 1 million QSOs at 1.8<z<3

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

Science Goals: BAO and dark energy

	BOSS (Stage III)	BigBOSS-North (Stage IV)	JDEM (Stage IV)	BigBOSS-N+S (Stage IV)
Redshift range	0 <z<0.7< th=""><th>0<z<3.5< th=""><th>0.7<z<2.0< th=""><th>0<z<3.5< th=""></z<3.5<></th></z<2.0<></th></z<3.5<></th></z<0.7<>	0 <z<3.5< th=""><th>0.7<z<2.0< th=""><th>0<z<3.5< th=""></z<3.5<></th></z<2.0<></th></z<3.5<>	0.7 <z<2.0< th=""><th>0<z<3.5< th=""></z<3.5<></th></z<2.0<>	0 <z<3.5< th=""></z<3.5<>
Sky Coverage	10000 deg ²	14000 deg ²	20000 deg ²	24000 deg ²
Wavelength Range	360-1000 nm	340-1130 nm	1100–2000 nm	340nm-1130 nm
Spectral Resolution	1600-2600	2300-6100	200	2300-6100
DETF FoM	57	175	250	286
DETF FoM w/Stage III	107	240	313	338

BigBOSS has same science reach as \$1.7B JDEM satellite BigBOSS could field on KPNO 4m + CTIO 4m

- "Stage-IV" dark energy experiment from the ground
 - Higher performance than JDEM-BAO satellite
 - Lower risk + greater flexibility
- Physics beyond the standard model

– More linear modes than CMB == higher sensitivity to non-gaussianity from inflation

Enhances future imaging surveys (DES, LSST)

- Adds spectroscopic capability, eg. for SNe follow-up
- Calibrates LSST photo-z's for WL

Requires only 4-m telescope time

- North: Kitt Peak (4m)
- South: CTIO (4m)

http:/bigboss.lbl.gov

Instrument: Telescope

Kitt Peak 4-m (Mayall) at Kitt Peak, Arizona

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

Instrument: **Telescope optics**

- Mayall is slow RC, making correction to **3° field**
- All magnification is in secondary
- Corrector lenses add no power
 - Simple fused silica
 - No CaF
- Manufacturing feasibility verified by the University of Arizona College of Optical
 - Less challenging than previous optics, using profilometry + interferometry
- Identical optics work at KPNO 4m + CTIO 4m

Instrument: Fiber positioners x 5000

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

Instrument: Fiber positioners x 5000

LBNL prototype

Scale is 1.92 cm center-to-center on this prototype New design 1.10 cm

Divide into 5000 hex cells on 83 cm diameter focal plane Each fiber is **individually actuated** with 2 Swiss motors Local accuracy is only 1 part in 700 for 15 micron precision Fiber reach extends slightly to adjacent cells - No dead space Reconfiguration time < 1 min

http:/bigboss.lbl.gov

Collaboration with USTC in Hefei, China

Experience building LAMOST fiber positioners Similar design (2 rotation axes with Micromo motors) at 2.54 cm center-to-center spacing

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

Image fibers from near M2

Calibrates positions of all the fiber "zero positions"

Back-light fibers within the spectrograph 9k x 9k camera sits in optically-unused spot near M2

Inner 40 cm of M2 unused optically

http:/bigboss.lbl.gov

Instrument: Spectrographs x 10

Instrument designed to be a "BAO spectrograph" Detect emission-line galaxies at z=0.6→2.0

Instrument: Detectors

Optical+IR focal plane in red "galaxy channel"

Developed by LBL Microsystems Lab for SNAP/JDEM satellite

Monday, July 20, 2009

http:/bigboss.lbl.gov

- Luminous Red Galaxies (LRGs):
 - Selected to z<1
 - Efficient BAO tracers due to large bias
- Emission-line galaxies:
 - Selected 0.7<z<2.0 at source density of dn/(dz deg²)=2000
 - Redshifts from [O II], [O III] emission lines, R~5000
- QSOs:
 - Selected 2<z<3.5

- 3-D density map from Ly-alpha forest

http:/bigboss.lbl.gov

Targets: Emission-line galaxies 0.7<z<2

z<1.6 sample *grz*-selected

Ground-Based Stage IV BAO Experiment

aBOS

1.5<z<2 sample *ugr*-selected

David Schlegel, Dome A, 21 Jul2009

Synthetic magnitudes are degraded using photometric errors from Palomar Transient Factory (gr), Pan-STARRS-1 (iz), and a CFHT-like survey (u)

33

http:/bigboss.lbl.gov

Targets: Emission-line galaxies 0.7<z<2

Monday, July 20, 2009

Ground-Based Stage IV BAO Experiment

Project scope

BigBOSS instrument compares well to WFMOS

- Easier design on 4m telescope
- Smaller aperture, but high throughput (no lens couplers, etc)
- More λ coverage (340-1150 nm)
- Higher resolution for full- λ coverage (R~5000 instead of R~1500)

Freeman, Newmann et al. 2009

<u>http:/bigboss.lbl.gov</u>

David Schlegel, Dome A, 21 Jul2009

Large Redshift Surveys

Sensitivity to new physics scales as volume -- # of modes Galaxy maps can greatly exceeds information content of CMB

BigBOSS: The Stage IV BAO Experiment Conclusions

- A "Stage-IV" dark energy scientific program from the ground
- "BAO spectrograph" is optimized for redshift-finding
 - 0 < z < 1.0 from absorption-line galaxies
 - 0 < z < 2.0 from emission-line galaxies
 - 1.8 < z < 3.5 from QSO LyA forest
- Up to 50 million galaxies in 10 years
 - SDSS BAO discovery was 60,000 galaxies
 - BOSS will have 1,500,000 galaxies, 0.3 < z < 0.7
 - JDEM uses a blind search and finds more galaxies, but not better figure-of-mert
- Physics beyond the standard model
- More linear modes than CMB maps == higher sensitivity to non-gaussianity from inflation

• Complementary to large imaging surveys (DES, LSST)

- Adds spectroscopic capability, eg. for SNe follow-up
- Calibrates LSST photo-z's for WL

Requires only 4-m telescope time

- North: Kitt Peak (4m)
- South: CTIO (4m)

http:/bigboss.lbl.gov

Extra slides

http:/bigboss.lbl.gov

BigBOSS: The Stage IV BAO Experiment

Physics beyond the standard model

BigBOSS cosmological constraints beat CMB!

http:/bigboss.lbl.gov

BigBOSS: The Stage IV BAO Experiment

Physics beyond the standard model

BigBOSS inflation constraints beat CMB!

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

BigBOSS: The Stage IV BAO Experiment

Physics beyond the standard model

BigBOSS projected constraints $f_{\rm NL}{\sim}2$

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

BAO: Geometric probe of dark energy

Monday, July 20, 2009

Redshift-space distortions: Gravitational probe of dark energy

BigBOSS: Linear power spectrum

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

BigBOSS: Non-gaussianity and f_{NL}

BigBOSS allows systematics checks w/ multiple samples

JDEM-BAO satellite lacks this

http:/bigboss.lbl.gov

David Schlegel, Dome A, 21 Jul2009

BigBOSS: Bispectrum

- > Has big potential, in principle:
 - Measures GROWTH -- yet another dark energy probe
 - Can measure more general types of non-Gaussianity
 - Large scales implies better behaved sample than e.g. SDSS
 - Different contributions separated by different triangle configurations
 - Plots from Jeong and Komatsu:

